
CMSC 350 Project 4

The fourth programming project involves writing a program that accepts information contained in a file about

the class dependencies in a Java program and creates a directed graph from that information. From the directed

graph, it produces two different kinds of displays of those dependency relationships.

A sample input file is shown below:

ClassA ClassC ClassE ClassJ

ClassB ClassD ClassG

ClassC ClassA

ClassE ClassB ClassF ClassH

ClassJ ClassB

ClassI ClassC

The first name of each line of the file is a Java class upon which other classes depend. The remaining names are

the classes that depend upon the first class on that line. The first line of the above file, for example, indicates

that ClassA has three classes that depend upon it, ClassC, ClassE and ClassJ. A class that have does any

classes that depend on it, need not appear at the head of any line.

The main method in the class for this project should allow user select the input file from the default directory by

using the JFileChooser class. It should then add the edges to a directed graph that defines these class

dependencies.

A second class, DirectedGraph, should be a generic class, whose generic parameter specifies the type of the

labels that are associated with the vertices of the graph. The internal representation of the graph should be the

alternate adjacency list representation illustrated in Figure 10.7 of our textbook Object-Oriented Data

Structures Using Java. Unlike that graph, however, this graph will not be a weighted graph.

It should contain a method that allows edges to be added to the graph, which is how the main method will

initially build the graph. It should also contain a method that performs a depth-first search of that graph. The

pseudocode for that search is show below:

depth_first_search(vertex s)

 if s is discovered

 perform cycle detected action

 return

 perform add vertex action

 mark s as discovered

 perform descend action

 for all adjacent vertices v

 depth_first_search(v)

 perform ascend action

 mark s as finished

When the method in the DirectedGraph class that initiates the depth first search is called, it should first

initialize all the vertices to the undiscovered state and begin the search at the vertex that corresponds to the first

name in the input file.

Another method in the DirectedGraph class should then allow the main method to display any unreachable

classes by examining all the vertices of the graph to see which remain undiscovered.

This project should contain a generic interface named DFSActions, whose generic parameter again specifies

the type of the labels that are associated with the vertices of the graph. It should contain four method signatures

that correspond to the four actions performed in the depth first search: cycle detected, process vertex, descend

and ascend.

There should be two additional classes that both implement the aforementioned interface. The first,

Hierarchy, should produce a hierarchical representation of the class dependencies. Circular dependencies

should be flagged. For the above input file, the following hierarchical representation should be produced:

ClassA

 ClassC *

 ClassE

 ClassB

 ClassD

 ClassG

 ClassF

 ClassH

 ClassJ

 ClassB

 ClassD

 ClassG

The asterisk after ClassC results from the fact that ClassC depends upon ClassA and ClassA depends upon

ClassC. The Hierarchy class should override the toString method, which should return a string that

contains the above, after having performed the depth-first search.

The other class that implements the DFSActions interface should be ParenthesizedList. It should produce

an alternate representation that is also returned by its toString method. For the above input file, the following

hierarchical representation should be produced:

(ClassA (ClassC * ClassE (ClassB (ClassD ClassG) ClassF ClassH) ClassJ (

ClassB (ClassD ClassG))))

The main method should produce both representations. In addition it should display the unreachable classes by

calling the previously mentioned method. For the above input file, the following unreachable class should be

identified:

ClassI is unreachable

Code duplication should be avoided. In particular, the depth first code should not be duplicated.

You are to submit two files.

1. The first is a .zip file that contains all the source code for the project. The .zip file should contain

only source code and nothing else, which means only the .java files. If you elect to use a package the

.java files should be in a folder whose name is the package name. Every outer class should be in a

separate .java file with the same name as the class name. Each file should include a comment block at

the top containing your name, the project name, the date, and a short description of the class contained

in that file.

2. The second is a Word document (PDF or RTF is also acceptable) that contains the documentation for the

project, which should include the following:

a. A UML class diagram that includes all classes you wrote. Do not include predefined classes.

You need only include the class name for each individual class, not the variables or methods

b. A test plan that includes test cases that you have created indicating what aspects of the program

each one is testing

c. A short paragraph on lessons learned from the project

Grading Rubric

Criteria Meets Does Not Meet

Design

20 points 0 points

Includes a generic DirectedGraph class
that represents the graph with the
alternate adjacency list representation
(6)

Does not include a generic
DirectedGraph class or does not
represents the graph with the alternate
adjacency list representation (0)

Includes a generic class DFSActions that
contains methods for four actions
performed in the depth first search (4)

Does not include a generic class
DFSActions that contains methods for
four actions performed in the depth
first search (0)

Includes required two class that
implement the DFSActions interface (5)

Does not include required two class
that implement the DFSActions
interface (0)

Avoids duplication of the depth-first
search code (5)

Does not avoid duplication of the
depth-first search code (0)

Functionality

60 points 0 points

Reads in file and produces graph
representation as specified (10)

Does not read in file or does not
produce graph representation as
specified (0)

Displays correct hierarchical
representation of class hierarchy (15)

Does not display correct hierarchical
representation of class hierarchy (0)

Displays correct parenthesized
representation of class hierarchy (15)

Does not display correct parenthesized
representation of class hierarchy (0)

Correctly annotates circular
dependencies (10)

Does not correctly annotate circular
dependencies (0)

Correctly lists unreachable classes (10) Does not correctly list unreachable
classes (0)

Test Plan

10 points 0 points

Test cases include a graph with circular
dependencies (3)

Test cases do not include a graph with
circular dependencies (0)

Test cases include a graph with no
circular dependencies (2)

Test cases do not include a graph with
no circular dependencies (0)

Test cases include a graph with
unreachable classes (3)

Test cases do not include a graph with
unreachable classes (0)

Test cases include a graph with no
unreachable classes (2)

Test cases do not include a graph with
no unreachable classes (0)

Documentation

10 points 0 points

Correct UML diagram included (3) Correct UML diagram not included (0)

Lessons learned included (4) Lessons learned not included (0)

Comment blocks included with each
Java file (3)

Comment blocks not included with
each Java file(0)

